Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 75, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013208

RESUMO

Metal oxides are intensively used for multilayered optoelectronic devices such as organic light-emitting diodes (OLEDs). Many approaches have been explored to improve device performance by engineering electrical properties. However, conventional methods cannot enable both energy level manipulation and conductivity enhancement for achieving optimum energy band configurations. Here, we introduce a metal oxide charge transfer complex (NiO:MoO3-complex), which is composed of few-nm-size MoO3 domains embedded in NiO matrices, as a highly tunable carrier injection material. Charge transfer at the finely dispersed interfaces of NiO and MoO3 throughout the entire film enables effective energy level modulation over a wide work function range of 4.47 - 6.34 eV along with enhanced electrical conductivity. The high performance of NiO:MoO3-complex is confirmed by achieving 189% improved current efficiency compared to that of MoO3-based green OLEDs and also an external quantum efficiency of 17% when applied to blue OLEDs, which is superior to 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile-based conventional devices.

2.
Adv Mater ; 33(3): e2005255, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33617075

RESUMO

Organic-inorganic hybrid perovskite nanoparticles (NPs) are a very strong candidate emitter that can meet the high luminescence efficiency and high color standard of Rec.2020. However, the instability of perovskite NPs is the most critical unsolved problem that limits their practical application. Here, an extremely stable crosslinked perovskite NP (CPN) is reported that maintains high photoluminescence quantum yield for 1.5 years (>600 d) in air and in harsher liquid environments (e.g., in water, acid, or base solutions, and in various polar solvents), and for more than 100 d under 85 °C and 85% relative humidity without additional encapsulation. Unsaturated hydrocarbons in both the acid and base ligands of NPs are chemically crosslinked with a methacrylate-functionalized matrix, which prevents decomposition of the perovskite crystals. Counterintuitively, water vapor permeating through the crosslinked matrix chemically passivates surface defects in the NPs and reduces nonradiative recombination. Green-emitting and white-emitting flexible large-area displays are demonstrated, which are stable for >400 d in air and in water. The high stability of the CPN in water enables biocompatible cell proliferation which is usually impossible when toxic Pb elements are present. The stable materials design strategies provide a breakthrough toward commercialization of perovskite NPs in displays and bio-related applications.

3.
Small ; 16(40): e2002109, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32930494

RESUMO

Environmentally friendly ZnSe/ZnS core/shell quantum dots (QDs) as an alternative blue emission material to Cd-based QDs have shown great potential for use in next-generation displays. However, it remains still challenging to realize a high-efficiency quantum dot light-emitting diode (QLED) based on ZnSe/ZnS QDs due to their insufficient electrical characteristics, such as excessively high electron mobility (compared to the hole mobility) and the deep-lying valence band. In this work, the effects of QDs doped with hole transport materials (hybrid QDs) on the electrical characteristics of a QLED are investigated. These hybrid QDs show a p-type doping effect, which leads to a change in the density of the carriers. Specifically, the hybrid QDs can balance electrons and holes by suppressing the overflow of electrons and improving injection of holes, respectively. These electrical characteristics help to improve device performance. In detail, an external quantum efficiency (EQE) of 6.88% is achieved with the hybrid QDs. This is increased by 180% compared to a device with pure ZnSe/ZnS QDs (EQE of 2.46%). This record is the highest among deep-blue Cd-free QLED devices. These findings provide the importance of p-type doping effect in QD layers and guidance for the study of the electrical properties of QDs.

4.
Nat Commun ; 11(1): 3040, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546822

RESUMO

The next-generation wearable near-eye displays inevitably require extremely high pixel density due to significant decrease in the viewing distance. For such denser and smaller pixel arrays, the emissive material must exhibit wider colour gamut so that each of the vast pixels maintains the colour accuracy. Electroluminescent quantum dot light-emitting diodes are promising candidates for such application owing to their highly saturated colour gamuts and other excellent optoelectronic properties. However, previously reported quantum dot patterning technologies have limitations in demonstrating full-colour pixel arrays with sub-micron feature size, high fidelity, and high post-patterning device performance. Here, we show thermodynamic-driven immersion transfer-printing, which enables patterning and printing of quantum dot arrays in omni-resolution scale; quantum dot arrays from single-particle resolution to the entire film can be fabricated on diverse surfaces. Red-green-blue quantum dot arrays with unprecedented resolutions up to 368 pixels per degree is demonstrated.

5.
Phys Chem Chem Phys ; 21(47): 26095-26101, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31746867

RESUMO

Enhancing the luminescence efficiency and stability of solid-state phosphors with facile processability is important for various applications. Carbon-based materials might have proper optical features and durability under ambient conditions. However, carbon-based phosphors usually showed severe quenching of the photoluminescence in the absence of solvent. Alkylamine-functionalization of carbon-based phosphors can alleviate the quenching, but it also resulted in low luminous efficiency. In this study, tailoring the functional groups of carbon nanodots (CNDs) was carefully studied through alkylamine-functionalization and reduction. The reduction with NaBH4 changed the electron-withdrawing functional groups on the alkylamine-functionalized CNDs to electron-donating groups, enhancing the luminescence efficiency. The delicate modulation of alkylamine-functionalization and reduction enabled efficient and robust photoluminescence in the film without any host materials.

6.
Nano Lett ; 19(10): 6827-6838, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31476862

RESUMO

Achieving high emission efficiency in solid-state quantum dots (QDs) is an essential requirement for high-performance QD optoelectronics. However, most QD films suffer from insufficient excitation and light extraction efficiencies, along with nonradiative energy transfer between closely adjacent QDs. Herein, we suggest a highly effective strategy to enhance the photoluminescence (PL) of QD composite films through an assembly of QDs and poly(styrene-b-4-vinylpyridine)) (PS-b-P4VP) block copolymer (BCP). A BCP matrix casted under controlled humidity provides multiscale phase-separation features based on (1) submicrometer-scale spinodal decomposition between polymer-rich and water-rich phases and (2) sub-10 nm-scale microphase separation between polymer blocks. The BCP-QD composite containing bicontinuous random pores achieves significant enhancement of both light absorption and extraction efficiencies via effective random light scattering. Moreover, the microphase-separated morphology substantially reduces the Förster resonance energy transfer efficiency from 53% (pure QD film) to 22% (BCP-QD composite), collectively achieving an unprecedented 21-fold enhanced PL over a broad spectral range.

7.
Nanoscale ; 11(28): 13219-13226, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31066736

RESUMO

We have prepared a highly luminescent quantum dot (QDs)-TiO2 nanocomplex film by the dip coating method. Because QDs with 3-mercaptopropionic acid as a ligand adsorb ionized Ti+ cations on the TiO2 particle, the average distance between the QDs can be changed through controlling the porosity in the film. The porosity is controlled using ethyl cellulose (EC). EC is the best material for well dispersing the hydroxyl functional group (-OH) in the chemical structure, and forming pores inside the film under the decomposition temperature (above 698 °F). As the porosity decreases, the average decay time controlled by the porosity increases to the maximum 91.2 ns. On the other hand, the amount of QDs decreased to 50%, hindering the increase of photo-luminescence (PL) intensity. Through this result, we have found that the PL intensity of the QD films is strongly related to the amount of the QDs and the resolution of aggregation. Consequently, we have optimized the porosity of the film and obtained high PL intensities up to approximately 17 times.

8.
RSC Adv ; 9(27): 15177-15183, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35514803

RESUMO

Recently, quantum dots based light-emitting diodes (QLEDs) have received huge attention due to the properties of quantum dots (QDs), such as high photoluminescence quantum yield (PLQY) and narrow emission. To improve the performance of QLEDs, reducing non-radiative energy transfer is critical. So far, most conventional methods required additional chemical treatment like giant shell and/or ligands exchange. However that triggers unsought shifted emission or reduced PLQY of QDs. In this work, we have firstly suggested a novel approach to improve the efficiency of QLEDs by introducing inorganic nanoparticles (NPs) spacer between QDs, without additional chemical treatment. As ZnS NPs formed a mixture layer with QDs, the energy transfer was reduced and the distance between the QDs increased, leading to improved PLQY of mixture layer. As a result, current efficiency (CE) of the QLED device was improved by twice compared with one using only QDs layer. This is an early report on utilizing ZnS NPs as an efficient spacer, which can be utilized to other compositions of QDs.

9.
Nanoscale Adv ; 1(10): 3948-3956, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132117

RESUMO

Recently, quantum dots (QDs) have often garnered significant attention and have been employed for various applications. Nevertheless, most conventional devices utilize a glass substrate and/or brittle substrate, which is not compatible with next-generation wearable electronics. A suitable method for devising conductive and flexible free-standing platforms that can be combined with various kinds of QDs is thus in great need for next-generation wearable electronics. In this work, we introduce a universal and simple method to coat QDs on carbon nanofibers (CNFs) by a dip-coating process, where many kinds of QDs can be well decorated on the surface of CNFs. As one potential application among many, QD-coated CNFs were examined for their photocatalytic applications and characterization. As a result, it was found that the best performance of CdSe QD-coated CNFs for hydrogen production was 3.8 times higher than that of only QDs with the same 1 mg of QDs. This is an early report on fabricating various kinds of QD-coated CNFs, which can be extended to a myriad set of applications.

10.
Nanoscale Adv ; 1(8): 2828-2834, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36133611

RESUMO

We investigated the exciton decay dynamics of CsPbBr3 perovskite quantum dots (PQDs) through an X-type ligand passivation process. 1-Dodecanethiol (DDT), as an X-type ligand, covers Br vacancies of PQDs and then the photoluminescence quantum yield (PLQY) sharply improved from 76.1% to 99.8%. Impressively, after passivation, the photoluminescence (PL) lifetime of PQDs decreased from 3.16 ns to 2.42 ns, contrary to the PLQY increase. To clarify this phenomenon, we observed exciton decay dynamics by varying the temperature. Thereby, we found that shallow traps from Br vacancies not only reduce the PLQY but also induce a longer lifetime related to the nonradiative exciton decay leading to an increase in the lifetime. Our results are novel and important in a way that we provide a systematic understanding of the exciton decay dynamics by combining two key concepts together: (1) near unity PLQY via ligand engineering and (2) temperature-dependent photogenerated excitons.

11.
ACS Nano ; 12(8): 8224-8233, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30067895

RESUMO

For low-cost and facile fabrication of innovative nanoscale devices with outstanding functionality and performance, it is critical to develop more practical patterning solutions that are applicable to a wide range of materials and feature sizes while minimizing detrimental effects by processing conditions. In this study, we report that area-selective sub-10 nm pattern formation can be realized by temperature-controlled spin-casting of block copolymers (BCPs) combined with submicron-scale-patterned chemical surfaces. Compared to conventional room-temperature spin-casting, the low temperature ( e.g., -5 °C) casting of the BCP solution on the patterned self-assembled monolayer achieved substantially improved area selectivity and uniformity, which can be explained by optimized solvent evaporation kinetics during the last stage of film formation. Moreover, the application of cold spin-casting can also provide high-yield in situ patterning of light-emitting CdSe/ZnS quantum dot thin films, indicating that this temperature-optimized spin-casting strategy would be highly effective for tailored patterning of diverse organic and hybrid materials in solution phase.

12.
ACS Appl Mater Interfaces ; 9(37): 32097-32105, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28846371

RESUMO

We synthesized uniform CuInS2/ZnS nanocubes by adjusting reaction parameters at the ZnS growth stage. Higher temperature and zinc concentration were shown to drive resultant crystals to have cubic morphology, which could be ascribed to the facet-dependent ligand dynamics on the crystal surface and concomitantly preferred directions of crystal growth. It was found that these nanocubes exhibit sensitive responses, as of photoluminescence quenching, toward hydrogen peroxide, compared to pyramid-shaped nanocrystals. The origin of quenching was further analyzed to be the oxidation of thiolate ligands that leaves the quenching center on the surface. It was noted that the quenched photoluminescence could be fully recovered by introducing additional ligand molecules into the system. Being adopted in the shape-controlled crystal growth, the ligand-to-crystal interaction was shown to still govern the interfacial reaction, the oxidation by hydrogen peroxide, of faceted crystals in our system. It turns out that the reactivity at the crystal surface depends on the exposed facets, especially induced by shape control, and the weak ligand-binding nature of the nanocube renders it vulnerable to the surface reaction.

13.
ACS Appl Mater Interfaces ; 7(48): 26566-71, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26562214

RESUMO

Imidazolium ionic side-group-containing fluorene-based conjugated polyelectrolytes (CPEs) with different π-conjugated structures, poly[(9,9-bis(8'-(3″-methyl-1″-imidazolium)octyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] dibromide (F8im-Br) and poly[(9,9-bis(8'-(3″-methyl-1″-imidazolium)octyl)-2,7-fluorene)-alt-(benzo(2,1,3)thiadiazol-4,8-diyl) dibromide (F8imBT-Br), are synthesized and utilized as an electron injection layer (EIL) in green-emitting F8BT polymer light-emitting diodes (PLEDs). Both CPE EIL devices significantly outperform Ca cathode devices; 17.9 cd A(-1) (at 3.8 V) and 16.6 lm W(-1) (at 3.0 V) for F8imBT-Br devices, 11.1 cd A(-1) (at 4.2 V) and 9.1 lm W(-1) (at 3.4 V) for F8im-Br devices, and 7.2 cd A(-1) (at 3.6 V) and 7.0 lm W(-1) (at 3.0 V) for Ca devices. Importantly, unlike the F8im-Br EIL devices, F8imBT-Br PLEDs exhibit much faster electroluminescence turn-on times (<10 µs) despite both EILs possessing the same tethered imidazolium and mobile bromide ions. The F8imBT-Br devices represent, to the best of our knowledge, the highest efficiency in thin (70 nm) single-layer F8BT PLEDs in conventional device architecture with the fastest EL response time using CPE EIL with mobile ions. Our results clearly indicate the importance of an additional factor of EIL materials, specifically the conjugated backbone structure, to determine the device efficiency and response times.

14.
Langmuir ; 31(25): 7117-21, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26043065

RESUMO

Electrostatically stabilized InP quantum dots (QDs) showing a high luminescence yield of 16% without any long alkyl chain coordinating ligands on their surface are demonstrated. This is achieved by UV-etching the QDs in the presence of fluoric and sulfuric acids. Fluoric acid plays a critical role in selectively etching nonradiative sites during the ligand-exchange process and in relieving the acidity of the solution to prevent destruction of the QDs. Given that the InP QDs show high luminescence without any electrical barriers, such as long alkyl ligands or inorganic shells, this method can be applied for QD treatment for application to highly efficient QD-based optoelectronic devices.

15.
Bioresour Technol ; 181: 355-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681096

RESUMO

Solar radiation is composed of wide light spectrum including the range which cannot be utilized for microalgae. To enhance the light utilization efficiency, organic dye solutions of rhodamine101 and 9,10-diphenylanthracene were used as wavelength converters. Each dye affected cell growth and lipid accumulation differently, based on the response of each to different light spectrum. Under a light intensity of 50 W/m(2), maximum cell growth (1.5 g/L) was obtained with the red organic dye rhodamine101, whereas best lipid content (30%) with the blue type 9,10-diphenylanthracene. These two separate and complementary traits could be combined by simple mixing, and in so doing optimal growth (1.5 g/L) as well as lipid accumulation (30%) was achieved: lipid productivity was 2.3 times greater than without the organic dye. This study proved that certain organic dye solutions could convert useless wavelengths to be useful for algae cultivation, thereby increasing the productivity of biomass and lipids.


Assuntos
Chlorella/efeitos da radiação , Corantes/metabolismo , Microalgas/efeitos da radiação , Antracenos/metabolismo , Chlorella/crescimento & desenvolvimento , Microalgas/citologia , Microalgas/crescimento & desenvolvimento , Fotossíntese/efeitos da radiação
16.
Nanotechnology ; 25(17): 175702, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24722191

RESUMO

We introduce shell cross-linked protein/quantum dot (QD) hybrid nanocapsules as a serum-stable systemic delivery nanocarrier for tumor-targeted in vivo bio-imaging applications. Highly luminescent, heavy-metal-free Cu0.3InS2/ZnS (CIS/ZnS) core-shell QDs are synthesized and mixed with amine-reactive six-armed poly(ethylene glycol) (PEG) in dichloromethane. Emulsification in an aqueous solution containing human serum albumin (HSA) results in shell cross-linked nanocapsules incorporating CIS/ZnS QDs, exhibiting high luminescence and excellent dispersion stability in a serum-containing medium. Folic acid is introduced as a tumor-targeting ligand. The feasibility of tumor-targeted in vivo bio-imaging is demonstrated by measuring the fluorescence intensity of several major organs and tumor tissue after an intravenous tail vein injection of the nanocapsules into nude mice. The cytotoxicity of the QD-loaded HSA-PEG nanocapsules is also examined in several types of cells. Our results show that the cellular uptake of the QDs is critical for cytotoxicity. Moreover, a significantly lower level of cell death is observed in the CIS/ZnS QDs compared to nanocapsules loaded with cadmium-based QDs. This study suggests that the systemic tumor targeting of heavy-metal-free QDs using shell cross-linked HSA-PEG hybrid nanocapsules is a promising route for in vivo tumor diagnosis with reduced non-specific toxicity.

17.
J Nanosci Nanotechnol ; 13(6): 4079-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862451

RESUMO

On the basis of structural information of its host material which shows excellent stability and absorption efficiency in ultra-violet (UV) region, a blue-emitting Sr2MgSi2O7:Eu2+ (SMS:Eu2+) phosphor was synthesized, and its photoluminescence (PL) performance was systematically optimized. In order to enhance its PL properties, Ce3+ was added as a sensitizer based on the energy transfer from the absorption energy of Ce3+ to Eu2+. It was due to the spectral overlap between the photoluminescence excitation spectrum of Ce3+ and the PL spectrum of Eu2+. Moreover, the energy transfer rate from Ce3+ to Eu2+ is generally faster than the emission rate of Ce3+ in the dipole-dipole interaction. Depending upon the amount of Ca2+ substituted into Sr site, their maximum wavelength was varied from -460 to -540 nm in terms of the crystal field effect confirmed by the structural analysis via Rietveld refinement method. Finally, the optimized blue-emitting SMS:Eu2+ and Ca(2+)-substituted yellowish green-emitting SMS:Eu2+ phosphors were applied with Eu(2+)-sensitized red-emitting Ca3Mg3(PO4)4:Mn2+ phosphor introduced in our previous research to UV light emitting diode (LED)-pumped white LEDs. The fabricated white LEDs showed a natural white light with the color coordinate of (0.3298, 0.3280) and the excellent color rendering index of 94.

18.
Opt Express ; 21(3): 3287-97, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481788

RESUMO

A series of single-phased emission-tunable Na(0.34)Ca(0.66)Al(1.66)Si(2.34)O(8):Eu(2+),Mn(2+) phosphors were successfully synthesized by a wet-chemical synthesis method. Photoluminescence excitation (PLE) spectra indicate that the phosphor can be efficiently excited by UV radiation from 250 to 420 nm. Also, NCASO:Eu(2+),Mn(2+) phosphor exhibit a broad blue emission band at 440 nm and an orange emission band at 570 nm, which originate from Eu(2+) and Mn(2+) ions, respectively. Therefore, overall emission color can be tuned from blue to white by increasing the concentration of Mn(2+) ions in the host lattice utilizing energy transfer from Eu(2+) to Mn(2+) ions. This energy transfer phenomenon was demonstrated to be a resonant type through dipole-dipole interaction determined with the help of PL spectra, decay time measurement, and energy transfer efficiency of the phosphor. These results indicate that NCASO:Eu(2+),Mn(2+) can be a promising single-phased white-emitting phosphor for white-light UV LEDs.


Assuntos
Cor , Iluminação/instrumentação , Refratometria/instrumentação , Semicondutores , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Ultravioleta
19.
Adv Mater ; 25(14): 2011-7, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23315683

RESUMO

The incorporation of InP quantum-dot/N-doped multiwalled carbon nanotube (QD:NCNT) nanohybrids in the active layer of poly(3-hexylthiophene)/indene-C60 bisadduct (P3HT/ICBA) bulk-heterojuction solar cells enhances V(OC) and J(SC) . The QDs encourage exciton dissociation by promoting electron transfer, while the NCNTs enhance the transport of the separated electrons and eventual charge collection. Such a synergistic effect successfully improves the power conversion efficiency (PCE) from 4.68% (reference cells) to 6.11%.


Assuntos
Nanotubos de Carbono/química , Pontos Quânticos , Energia Solar , Aminas/química , Fulerenos/química , Indenos/química , Teoria Quântica , Tiofenos/química
20.
Inorg Chem ; 51(20): 10688-94, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23003677

RESUMO

A novel blue-emitting phosphor, Na(0.34)Ca(0.66)Al(1.66)Si(2.34)O(8):Eu(2+) (NCASO:Eu(2+)), was prepared by a wet chemical synthesis method based on the hydrolysis of tetraorthosiliate (TEOS) and confirmed the formation of NCASO:Eu(2+) from Rietveld analysis. Photoluminescence (PL) results showed that the phosphor can be efficiently excited by UV light from 250 to 420 nm, and emitted bright broad blue emission, which has maximum intensity at around 445 nm. Under 365 nm excitation, the PL emission intensity area of optimized NCASO:Eu(2+) was found to be 99.72% of that of a commercial BaMgAl(10)O(17):Eu(2+) (BAM:Eu(2+)) phosphor. Moreover, the optical absorbance, internal quantum efficiency, and external quantum efficiency of NCASO:Eu(2+) were calculated to be 112%, 94%, and 105% of that of the commercial BAM:Eu(2+) phosphor, respectively. The WLEDs were fabricated using the blue NCASO:Eu(2+) phosphor, a green-emitting ß-SiAlON:Eu(2+), and a red-emitting CaAlSiN(3):Eu(2+) phosphors with a near-UV chip. The WLED device exhibited an excellent color-rendering index R(a) of 94 at a correlated color temperature of 5956 K with CIE coordinates of x = 0.323, y = 0.335. These results suggest that NCASO:Eu(2+) is a promising blue-emitting phosphor for UV LED applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...